Part 1 resulted in the word frequency for each of the documents in the input path provided, persisted at the "1-word-freq" output directory, as shown below:
training@training-vm:~/git/exercises/shakespeare$ hadoop fs -cat 1-word-freq/part-r-00000 | less
...
therefore@all-shakespeare 652
therefore@leornardo-davinci-all.txt 124
therefore@the-outline-of-science-vol1.txt 36
The definition of Job 2 will take into account the structure of this data in the creation of the Mapper and Reducer classes.
Job 2: Word Counts for Docs
The goal of this job is to count the total number of words for each document, in a way to compare each word with the total number of words. I've tried to implement a default InputFormat and I couldn't find examples related to it. As I understood, the values could be read in the same format they are saved (Text, IntWritable), but I will keep it simple and use the same default InputFormat as before. Following the same definition as in part one, the specification of the Map and Reduce are as follows:
- Map:
- Input: ((word@document), n)
- Re-arrange the mapper to have the key based on each document
- Output: (document, word=n)
- Reducer
- N = totalWordsInDoc = sum [word=n]) for each document
- Output: ((word@document), (n/N))
I have learned that the Iterable values in the values of the Reducer class can't be iterated more than once. The loop just did not enter when two foreach operations were performed, so I implemented it using a temporary map.
Job2, Mapper
// (c) Copyright 2009 Cloudera, Inc.
// Hadoop 0.20.1 API Updated by Marcello de Sales (marcello.desales@gmail.com)
package index;
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
/**
* LineIndexMapper Maps each observed word in a line to a (filename@offset) string.
*/
public class WordCountsForDocsMapper extends Mapper {
public WordCountsForDocsMapper() {
}
/**
* @param key is the byte offset of the current line in the file;
* @param value is the line from the file
* @param context
*
* PRE-CONDITION: aa@leornardo-davinci-all.txt 1
* aaron@all-shakespeare 98
* ab@leornardo-davinci-all.txt 3
*
* POST-CONDITION: Output <"all-shakespeare", "aaron=98"> pairs
*/
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] wordAndDocCounter = value.toString().split("\t");
String[] wordAndDoc = wordAndDocCounter[0].split("@");
context.write(new Text(wordAndDoc[1]), new Text(wordAndDoc[0] + "=" + wordAndDocCounter[1]));
}
}
Job2, Mapper Unit Test
I have just simplified the unit test to verify if the test Mapper generates the format needed for the Reducer.
// (c) Copyright 2009 Cloudera, Inc.
// Hadoop 0.20.1 API Updated by Marcello de Sales (marcello.desales@gmail.com)
package index;
import static org.apache.hadoop.mrunit.testutil.ExtendedAssert.assertListEquals;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import junit.framework.TestCase;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mrunit.mapreduce.MapDriver;
import org.apache.hadoop.mrunit.types.Pair;
import org.junit.Before;
import org.junit.Test;
/**
* Test cases for the word count mapper.
*/
public class WordCountsForDocsMapperTest extends TestCase {
private Mapper mapper;
private MapDriver driver;
@Before
public void setUp() {
mapper = new WordCountsForDocsMapper();
driver = new MapDriver(mapper);
}
@Test
public void testMultiWords() {
List> out = null;
try {
out = driver.withInput(new LongWritable(0), new Text("crazy@all-shakespeare\t25")).run();
} catch (IOException ioe) {
fail();
}
List> expected = new ArrayList>();
expected.add(new Pair(new Text("all-shakespeare"), new Text("crazy=25")));
assertListEquals(expected, out);
}
}
Job 2, Reducer
// (c) Copyright 2009 Cloudera, Inc.
// Hadoop 0.20.1 API Updated by Marcello de Sales (marcello.desales@gmail.com)
package index;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
/**
* WordCountsForDocsReducer counts the number of documents in the
*/
public class WordCountsForDocsReducer extends Reducer {
public WordCountsForDocsReducer() {
}
/**
* @param key is the key of the mapper
* @param values are all the values aggregated during the mapping phase
* @param context contains the context of the job run
*
* PRE-CONDITION: receive a list of
* pairs <"a.txt", ["word1=3", "word2=5", "word3=5"]>
*
* POST-CONDITION: <"word1@a.txt, 3/13">,
* <"word2@a.txt, 5/13">
*/
protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException {
int sumOfWordsInDocument = 0;
Map tempCounter = new HashMap();
for (Text val : values) {
String[] wordCounter = val.toString().split("=");
tempCounter.put(wordCounter[0], Integer.valueOf(wordCounter[1]));
sumOfWordsInDocument += Integer.parseInt(val.toString().split("=")[1]);
}
for (String wordKey : tempCounter.keySet()) {
context.write(new Text(wordKey + "@" + key.toString()), new Text(tempCounter.get(wordKey) + "/"
+ sumOfWordsInDocument));
}
}
}
Job 2, Reducer Unit Test
// (c) Copyright 2009 Cloudera, Inc.
// Hadoop 0.20.1 API Updated by Marcello de Sales (marcello.desales@gmail.com)
package index;
import static org.apache.hadoop.mrunit.testutil.ExtendedAssert.assertListEquals;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import junit.framework.TestCase;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mrunit.mapreduce.ReduceDriver;
import org.apache.hadoop.mrunit.types.Pair;
import org.junit.Before;
import org.junit.Test;
/**
* Test cases for the reducer of the word counts.
*/
public class WordCountsForDocsReducerTest extends TestCase {
private Reducer reducer;
private ReduceDriver driver;
@Before
public void setUp() {
reducer = new WordCountsForDocsReducer();
driver = new ReduceDriver(reducer);
}
@Test
public void testMultiWords() {
List> out = null;
try {
List values = new ArrayList();
values.add(new Text("car=50"));
values.add(new Text("hadoop=15"));
values.add(new Text("algorithms=25"));
out = driver.withInput(new Text("document"), values).run();
} catch (IOException ioe) {
fail();
}
List> expected = new ArrayList>();
expected.add(new Pair(new Text("car@document"), new Text("50/90")));
expected.add(new Pair(new Text("hadoop@document"), new Text("15/90")));
expected.add(new Pair(new Text("algorithms@document"), new Text("25/90")));
assertListEquals(expected, out);
}
}
Once again, following our Test-Driven Development approach, let's test our Mapper and Reducer classes in order to verify its "correctness" of the generated data. The JUnit 4 Test suit is updated as follows:
// (c) Copyright 2009 Cloudera, Inc.
// Updated by Marcello de Sales (marcello.dsales@gmail.com)
package index;
import junit.framework.Test;
import junit.framework.TestSuite;
/**
* All tests for inverted index code
*
* @author aaron
*/
public final class AllTests {
private AllTests() { }
public static Test suite() {
TestSuite suite = new TestSuite("Tests for the TF-IDF algorithm");
suite.addTestSuite(WordFreqMapperTest.class);
suite.addTestSuite(WordFreqReducerTest.class);
suite.addTestSuite(WordCountsForDocsMapperTest.class);
suite.addTestSuite(WordCountsForDocsReducerTest.class);
return suite;
}
}
Just testing it with the ANT task test, defined in the build.xml artifact.
training@training-vm:~/git/exercises/shakespeare$ ant test
Buildfile: build.xml
compile:
[javac] Compiling 12 source files to /home/training/git/exercises/shakespeare/bin
test:
[junit] Running index.AllTests
[junit] Testsuite: index.AllTests
[junit] Tests run: 7, Failures: 0, Errors: 0, Time elapsed: 0.424 sec
[junit] Tests run: 7, Failures: 0, Errors: 0, Time elapsed: 0.424 sec
[junit]
BUILD SUCCESSFUL
Similar to the previous Part 1, the the execution of the Driver is safer to proceed with tested classes. Furthermore, it includes the definitions of the mapper and reducer classes, as well as defining the combiner class to be the same as the reducer class. Also, note that the definition of the outputKeyClass and outputValueClass are the same as the ones defined by the Reducer class!!! Once again, Hadoop complains whey they are different :)
Job2, Driver
// (c) Copyright 2009 Cloudera, Inc.
// Hadoop 0.20.1 API Updated by Marcello de Sales (marcello.desales@gmail.com)
package index;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
* WordCountsInDocuments counts the total number of words in each document and
* produces data with the relative and total number of words for each document.
*/
public class WordCountsInDocuments extends Configured implements Tool {
// where to put the data in hdfs when we're done
private static final String OUTPUT_PATH = "2-word-counts";
// where to read the data from.
private static final String INPUT_PATH = "1-word-freq";
public int run(String[] args) throws Exception {
Configuration conf = getConf();
Job job = new Job(conf, "Words Counts");
job.setJarByClass(WordCountsInDocuments.class);
job.setMapperClass(WordCountsForDocsMapper.class);
job.setReducerClass(WordCountsForDocsReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
FileInputFormat.addInputPath(job, new Path(INPUT_PATH));
FileOutputFormat.setOutputPath(job, new Path(OUTPUT_PATH));
return job.waitForCompletion(true) ? 0 : 1;
}
public static void main(String[] args) throws Exception {
int res = ToolRunner.run(new Configuration(), new WordCountsInDocuments(), args);
System.exit(res);
}
}
The input data is located in the directory of the first step
"1-word-freq"
, and the output persisted in the directory "2-word-counts" as listed in the main training directory in the HDFS. If you need to take a look at the ANT build and other classes, go to my personal resources at my Google Code project. Recompile the project and generate the updated Jar with the driver.
training@training-vm:~/git/exercises/shakespeare$ ant
Buildfile: build.xml
compile:
[javac] Compiling 5 source files to /home/training/git/exercises/shakespeare/bin
[javac] Note: Some input files use or override a deprecated API.
[javac] Note: Recompile with -Xlint:deprecation for details.
jar:
[jar] Building jar: /home/training/git/exercises/shakespeare/indexer.jar
BUILD SUCCESSFUL
Total time: 1 second
Now, executing the driver...
training@training-vm:~/git/exercises/shakespeare$ hadoop jar indexer.jar index.WordCountsInDocuments
10/01/06 16:28:04 INFO input.FileInputFormat: Total input paths to process : 1
10/01/06 16:28:04 INFO mapred.JobClient: Running job: job_200912301017_0048
10/01/06 16:28:05 INFO mapred.JobClient: map 0% reduce 0%
10/01/06 16:28:12 INFO mapred.JobClient: map 100% reduce 0%
10/01/06 16:28:18 INFO mapred.JobClient: map 100% reduce 100%
10/01/06 16:28:20 INFO mapred.JobClient: Job complete: job_200912301017_0048
10/01/06 16:28:20 INFO mapred.JobClient: Counters: 17
10/01/06 16:28:20 INFO mapred.JobClient: Job Counters
10/01/06 16:28:20 INFO mapred.JobClient: Launched reduce tasks=1
10/01/06 16:28:20 INFO mapred.JobClient: Launched map tasks=1
10/01/06 16:28:20 INFO mapred.JobClient: Data-local map tasks=1
10/01/06 16:28:20 INFO mapred.JobClient: FileSystemCounters
10/01/06 16:28:20 INFO mapred.JobClient: FILE_BYTES_READ=1685803
10/01/06 16:28:20 INFO mapred.JobClient: HDFS_BYTES_READ=1588239
10/01/06 16:28:20 INFO mapred.JobClient: FILE_BYTES_WRITTEN=3371638
10/01/06 16:28:20 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=1920431
10/01/06 16:28:20 INFO mapred.JobClient: Map-Reduce Framework
10/01/06 16:28:20 INFO mapred.JobClient: Reduce input groups=0
10/01/06 16:28:20 INFO mapred.JobClient: Combine output records=0
10/01/06 16:28:20 INFO mapred.JobClient: Map input records=48779
10/01/06 16:28:20 INFO mapred.JobClient: Reduce shuffle bytes=1685803
10/01/06 16:28:20 INFO mapred.JobClient: Reduce output records=0
10/01/06 16:28:20 INFO mapred.JobClient: Spilled Records=97558
10/01/06 16:28:20 INFO mapred.JobClient: Map output bytes=1588239
10/01/06 16:28:20 INFO mapred.JobClient: Combine input records=0
10/01/06 16:28:20 INFO mapred.JobClient: Map output records=48779
10/01/06 16:28:20 INFO mapred.JobClient: Reduce input records=48779
Note that the execution generates tens of thousands of documents shuffled from ~1.6 million entries. Let's check the result using the hadoop fs -cat command once again and navigate through the result. The most important thing to note is that the relation n/N are maintained throughout the results, for each word and each total number for each document.
training@training-vm:~/git/exercises/shakespeare$
hadoop fs -cat 2-word-counts/part-r-00000 | less
....
relished@all-shakespeare 1/738781
therefore@all-shakespeare 652/738781
eastward@all-shakespeare 1/738781
....
irrespective@leornardo-davinci-all.txt 1/149612
ignorance@leornardo-davinci-all.txt 12/149612
drawing@leornardo-davinci-all.txt 174/149612
relief@leornardo-davinci-all.txt 36/149612
...
answer@the-outline-of-science-vol1.txt 25/70650
sleeve@the-outline-of-science-vol1.txt 1/70650
regard@the-outline-of-science-vol1.txt 22/70650
Part 3 will conclude this job by combining two different steps. I'm still using the original basic tutorial from Cloudera, but using the Hadoop 0.20.1 API. Any suggestions for improvements are welcomed:
- How to write data pipes between 2 different jobs?
- How to write a custom input format?
Those questions might be answered after the training in Sunnyvale on January 19-21, during the Hadoop Training I'm excited to attend.